Follow The algorithms.

EXPLAIN WHAT EACH IS DOING AND WORK OUT WHAT IS OUTPUT WITH THE DIFFERENT INPUTS!

EXPAND — STATE THE PURPOSE OF EACH SYMBOL

Computational Thinking

What is computational thinking?

Analysing a problem and identifying the solution in a way that a computer can carry it out.

What is decomposition?

Breaking down a problem into number of sub problems. Each subproblem should be a different task. Decomposition helps us solve complex problems.

What is abstraction?

Filtering out ideas and details that are not needed to concentrate on those that are. E.g. your timetable is an abstraction of what happens in a school day.

What is algorithmic thinking?

Identifying the exact steps required to solve a particular problem – usually by creating an algorithm. E.g. Identifying the exact steps required to create an automated quiz etc. Algorithms are usually displayed as flow diagrams or pseudocode.

Algorithms

What is an algorithm?

An algorithm is a sequence of steps that can be followed to complete a task or solve a problem. In computer science algorithms can either be expressed as standard English, a flow diagram or pseudocode.

What is a searching algorithm?

A step-by-step procedure used to locate specific data among a collection of data. It is considered a fundamental procedure in computing. E.g. locating a number within a larger list of numbers.

What is a **sorting algorithm?**

A step-by-step procedure that puts elements of a list into a certain order. This could be numerical or alphabetical order.

Creating Algorithms

Two main methods are used to design algorithms: flow diagrams and pseudocode.

Flow Diagram Flow Diagrams - Different symbols are used to start and end the diagram, whether information has been input or output, where a decision needs to be made (usually an IF statement or loop) and where a process is triggered e.g. add number 1 and number 2.

Pseudocode – Programs are written using a programming language which has specific rules and a specific syntax. The program will not run if the correct syntax is not used. Pseudocode looks similar to a programming language but it does not have a specific syntax which needs to be followed.

Pseudocode is not a programming language, it is a simple way of describing a set of instructions that does not have to use specific syntax.

NUMBER Pseudocode OUTPUT NUMBER Sequence STOP INPUT number1 **INPUT** number2 $total = number1 \times number2$ OUTPUT total **IF Statement INPUT** password IF password == "Password1" THEN OUTPUT "Welcome!" ELSE **OUTPUT** "Please try again!" ENDIF For Loop (Definite Loop) number = 6

NEXT count

total = 8

ENDWHILE

FOR count = 0 to 15 DO

OUTPUT number

While Loop (Indefinite Loop)

WHILE total < 100 DO

OUTPUT total

total = total * 2

number = number * 2

START

INPUT

NUMBE

NUMBER

NUMBER

YES

Nested IF Statement

INPUT age INPUT height **IF** age < 12 **THEN**

OUTPUT "Age criteria not met"

ELSE

IF height <= 1.2 THEN</pre>

OUTPUT "Height criteria not met"

ELSE ENDIF

OUTPUT "Join the queue!"

ENDIF

GCSE. This resource is strictly for the use of member schools for as long as they remain members of The PiXL Club Ltd.