Atom economy = Relative formula mass of desired product from equation Sum of relative formula mass of all reactants from equation

High atom economy is
important or sustainable development and economic reasons

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

M_{r} of $H_{2}=1+1=2$
M_{r} of $\mathrm{Zn}+2 \mathrm{HCl}=65+1+1+35.5+35.5=138$

Atom economy $=2 / 138 \times 100$

$$
=2 / 138 \times 100=1.45 \%
$$

This method is unlikely to be chosen as it has a low atom economy.

HT only:

200 g of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. Calculate the theoretical mass of calcium oxide made.

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

M_{r} of $\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$ M_{r} of $\mathrm{CaO}=40+16=56$
100 g of CaCO_{3} would make 56 g of CaO So 200 g would make 112 g

If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution can be calculated.

What is the concentration of a solution that has 35.0 g of solute in $0.5 \mathrm{dm}^{3}$ of solution?
$35 / 0.5=70 \mathrm{~g} / \mathrm{dm}^{3}$

$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

It takes $\mathbf{1 2 . 2 0} \mathrm{cm}^{3}$ of sulfuric acid to neutralise $\mathbf{2 4 . 0 0} \mathrm{cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration of the sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$:
$0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is (0.012/2) $=0.006 \mathrm{~mol}$ of sulfuric acid

Calculate the concentration of sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$ $0.006 \mathrm{~mol} \mathrm{x}(1000 / 12.2) \mathrm{dm}^{3}=0.49 \mathrm{~mol} / \mathrm{dm}^{3}$

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

M_{r} of $H_{2}=1+1=2$
M_{r} of $\mathrm{Zn}+2 \mathrm{HCl}=65+1+1+35.5+35.5=138$

Atom economy $=2 / 138 \times 100$

$$
=2 / 138 \times 100=1.45 \%
$$

This method is unlikely to be chosen as it has a low atom economy.

HT only:

$\mathbf{2 0 0 g}$ of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. Calculate the theoretical mass of calcium oxide made.

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

M_{r} of $\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$ M_{r} of $\mathrm{CaO}=40+16=56$
100 g of CaCO_{3} would make 56 g of CaO So 200 g would make 112 g
So 200 g would make 112 g

	It is not always possible to obtain the calculated amount of a product	The reaction may not go to completion because it is reversible.

If the volumes of two solutions that react completely are known and the concentrations of one solution is known, the concentration of the other solution can be calculated.

What is the concentration of a solution that has 35.0 g of solute in $0.5 \mathrm{dm}^{3}$ of solution?
$35 / 0.5=70 \mathrm{~g} / \mathrm{dm}^{3}$
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
It takes $\mathbf{1 2 . 2 0} \mathrm{cm}^{3}$ of sulfuric acid to neutralise $\mathbf{2 4 . 0 0} \mathrm{cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration of the sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$:
$0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is (0.012/2) $=0.006 \mathrm{~mol}$ of sulfuric acid

Calculate the concentration of sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$ $0.006 \mathrm{~mol} \mathrm{x}(1000 / 12.2) \mathrm{dm}^{3}=0.49 \mathrm{~mol} / \mathrm{dm}^{3}$

Use of amount of substance in relation to volumes of gases (HT only, chemistry only)
\% Yield = Mass of product made $\times 100$ Max. theoretical mass

A piece of sodium metal is heated in chlorine gas. A maximum theoretical mass of 10 g for sodium chloride was calculated, but the actual yield was only 8 g .
Calculate the percentage yield.
Percentage yield $=8 / 10 \times 100=80 \%$

Calculate the concentration of sulfuric acid in

$\mathrm{g} / \mathrm{dm}^{3}$:

$\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+32+(4 \times 16)=98 \mathrm{~g}$
$0.49 \times 98 \mathrm{~g}=48.2 \mathrm{~g} / \mathrm{dm}^{3}$

6 g of a hydrocarbon gas had a volume of $4.8 \mathrm{dm}^{3}$. Calculate its molecular mass.

1 mole $=\mathbf{2 4} \mathrm{dm}^{3}$, so $4.8 / 24=0.2 \mathrm{~mol}$
$M_{r}=6 / 0.2=30$
If $\mathbf{6 g}=\mathbf{0 . 2} \mathbf{~ m o l}, 1 \mathrm{~mol}$ equals $\mathbf{3 0} \mathrm{g}$

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

M_{r} of $H_{2}=1+1=2$
M_{r} of $\mathrm{Zn}+2 \mathrm{HCl}=65+1+1+35.5+35.5=138$

Atom economy $=2 / 138 \times 100$

$$
=2 / 138 \times 100=1.45 \%
$$

This method is unlikely to be chosen as it has a low atom economy.

Use of amount of substance in relation to volumes of gases (HT only, chemistry only)

What is the concentration of a solution that has 35.0 g of solute in $0.5 \mathrm{dm}^{3}$ of solution?
$35 / 0.5=70 \mathrm{~g} / \mathrm{dm}^{3}$

$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

It takes $12.20 \mathrm{~cm}^{3}$ of sulfuric acid to neutralise $24.00 \mathrm{~cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$

Calculate the concentration of the sulfuric acid in mol/dm³:
$0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is (0.012/2) $=0.006 \mathbf{m o l}$ of sulfuric acid

Calculate the concentration of sulfuric acid in mol/ dm ${ }^{3}$ $\left.0.006 \mathrm{~mol} \mathrm{x}^{(1000 / 12.2}\right)_{\mathrm{dm}}{ }^{3}=0.49 \mathrm{~mol} / \mathrm{dm}^{3}$

200 g of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. Calculate the theoretical mass of calcium oxide made.

$$
\mathrm{CaCO}_{3} \rightarrow \mathrm{CaO}+\mathrm{CO}_{2}
$$

M_{r} of $\mathrm{CaCO}_{3}=40+12+(16 \times 3)=100$ M_{r} of $\mathrm{CaO}=40+16=56$
100 g of CaCO_{3} would make 56 g of CaO
So 200 g would make 112 g

Yield is the amount of product obtained	The reaction may not go to completion because it is reversible.
	Some of the product may be lost when it is separated from the reaction mixture.
	Some of the reactants may react in ways different to the expected reaction.

 amount of product obtained as a percentage of the maximum theoretical amount

Equation:

A piece of sodium metal is heated in chlorine gas. A maximum theoretical mass of 10 g for sodium chloride was calculated,
but the actual yield was only 8 g .
Calculate the percentage yield.
Percentage yield $=8 / 10 \times 100=80 \%$

What is the volume of 11.6 g of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$ gas at RTP?
$\mathrm{M}_{\mathrm{r}}:(4 \times 12)+(10 \times 1)=58$

6 g of a hydrocarbon gas had a volume of $4.8 \mathrm{dm}^{3}$. Calculate its molecular mass.

1 mole $=24 \mathrm{dm}^{3}$, so $4.8 / 24=0.2 \mathrm{~mol}$

Calculate the atom economy for making hydrogen by reacting zinc with hydrochloric acid:

$$
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}
$$

HT only:

$\mathbf{2 0 0 g}$ of calcium carbonate is heated. It decomposes to make calcium oxide and carbon dioxide. Calculate the theoretical mass of calcium oxide made.

$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

It takes $\mathbf{1 2 . 2 0} \mathrm{cm}^{3}$ of sulfuric acid to neutralise $\mathbf{2 4 . 0 0} \mathrm{cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration of the sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$

