The ions discharged when an aqueous solution is electrolysed using inert electrodes depend on the relative reactivity of the elements involved.

In neutralisation reactions, hydrogen

 ions react with hydroxide ions to produce water: $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$| Acids | Acids produce hydrogen ions $\left(H^{+}\right)$
 in aqueous solutions. |
| :---: | :---: |
| Alkalis | Aqueous solutions of alkalis
 contain hydroxide ions $\left(\mathrm{OH}^{-}\right)$. |

Calculating the chemical quantities in
titrations involving concentrations in $\mathrm{mol} / \mathrm{dm}^{3}$ and in $\mathrm{g} / \mathrm{dm}^{3}$ (HT ONLY):
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

It takes $12.20 \mathrm{~cm}^{3}$ of sulfuric acid to neutralise $24.00 \mathrm{~cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration of the sulfuric acid in $\mathrm{g} / \mathrm{dm}^{3}$
$0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH

The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is $(0.012 / 2)=$ 0.006 mol of sulfuric acid

Calculate the concentration of sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$
$0.006 \mathrm{~mol} \times(1000 / 12.2) \mathrm{dm}^{3}=0.49 \mathrm{~mol} / \mathrm{dm}^{3}$
Calculate the concentration of sulfuric acid in $g / d m^{3}$
$\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+32+(4 \times 16)=98 \mathrm{~g}$ $0.49 \times 98 \mathrm{~g}=48.2 \mathrm{~g} / \mathrm{dm}^{3}$

Pi> L L L $\overbrace{\text { Parters in excellence }} \quad \begin{aligned} & \text { solution is electrolysed using inert } \\ & \text { electrodes depend on the relative } \\ & \text { reactivity of the elements involved. }\end{aligned}$

\section*{| | Metal will be produced on the electrode |
| :--- | :--- | if it is less reactive than hydrogen. Hydrogen will be produced if the metal is more reactive than hydrogen.
 Oxygen is formed at positive electrode. If you have a halide ion $\left(\mathrm{Cl}^{-}, \mathrm{I}^{-}, \mathrm{Br}^{-}\right)$then you will get chlorine, bromine or iodine formed at that electrode.}

	formed at that electrode.
	Electrolysis of aqueous solutions C.g. hydrochloric, nitric and sulfuric acids.
	Only partially ionised in aqueous solutions e.g. ethanoic acid, citric acid.
	As the pH decreases by one unit (becoming a stronger acid), the hydrogen ion concentration increases by a factor of 10.

In neutralisation reactions, hydrogen ions react with hydroxide ions to produce water:
$\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$

	Acids produce hydrogen ions $\left(\mathrm{H}^{+}\right)$ in aqueous solutions.
	Aqueous solutions of alkalis contain hydroxide ions $\left(\mathrm{OH}^{-}\right)$.

Calculating the chemical quantities in
titrations involving concentrations in

$\mathrm{mol} / \mathrm{dm}^{3}$ and in $\mathrm{g} / \mathrm{dm}^{3}$

(HT ONLY):
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
It takes $12.20 \mathrm{~cm}^{3}$ of sulfuric acid to neutralise $24.00 \mathrm{~cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.
Calculate the concentration of the sulfuric acid in $\mathrm{g} / \mathrm{dm}^{3}$
$0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH

Metals can be extracted from molten compounds using electrolysis.

This process is used when the metal is too reactive to be extracted by reduction with carbon.
The process is expensive due to large amounts of energy needed to produce the electrical current.
Example: aluminium is extracted in this way.
Higher tier: You can display what is happening at each electrode using half-equations:
At the cathode: $\mathrm{Pb}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}$
At the anode: $2 \mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 \mathrm{e}^{-}$
pipette to add $25 \mathrm{~cm}^{3}$ of alkali to a conical flask and add a few drops of indicator.
2. Fill the burette with acid and note the starting volume.

Slowly add the acid from the burette to the alkali in the conical flask, swirling to mix.
3. Stop adding the acid when the end-point is reached (the appropriate colour change in the indicator happens). Note the final volume reading. Repeat steps 1 to 3 until you get consistent readings.

The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is $(0.012 / 2)=$ 0.006 mol of sulfuric acid

Calculate the concentration of sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$
$0.006 \mathrm{~mol} \mathrm{x}(1000 / 12.2) \mathrm{dm}^{3}=0.49 \mathrm{~mol} / \mathrm{dm}^{3}$
Calculate the concentration of sulfuric acid in g / d^{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}=(2 \times 1)+32+(4 \times 16)=98 \mathrm{~g}$ $0.49 \times 98 \mathrm{~g}=48.2 \mathrm{~g} / \mathrm{dm}^{3}$

The ions discharged when an aqueous solution is electrolysed using inert electrodes depend on the relative reactivity of the elements involved.

Partners in excellence \quad| solution is electrolysed using inert |
| :--- |
| electrodes depend on the relative |
| reactivity of the elements involved. |

Electrolysis of aqueous solutions

Completely ionised in aqueous solutions e.g. hydrochloric, nitric and sulfuric acids.

Only partially ionised in aqueous solutions e.g. ethanoic acid, citric acid.

As the pH decreases by one unit (becoming a stronger acid), the hydrogen ion concentration increases by a factor of 10.

	Electrolysis of aqueous solutions Completely ionised in aqueous solutions e.g. hydrochloric, nitric and sulfuric acids.
	Only partially ionised in aqueous solutions e.g. ethanoic acid, citric acid.
As the pH decreases by one unit (becoming	
a stronger acid), the hydrogen ion	
concentration increases by a factor of 10.	

Salule salts can be made from reacting acids with solid insoluble substances s, metal oxides, hydroxides and carbonates).

Add the solid to the acid until no more issolves. Filter off excess solid and then crystallise to produce solid salts.

The process is expensive due to large amounts of energy needed to produce the electrical current.
Example: aluminium is extracted in this way.

Higher tier: You can display what is happening at each electrode using half-equations: At the cathode: At the anode:

The process is expensive due to large amounts of energy needed to produce the electrical current. Example: aluminium is extracted in this way.	

Calculating the chemical quantities in
titrations involving concentrations in $\mathrm{mol} / \mathrm{dm}^{3}$ and in $\mathrm{g} / \mathrm{dm}^{3}$
(HT ONLY):
$2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+$ $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
It takes $12.20 \mathrm{~cm}^{3}$ of sulfuric acid to neutralise $24.00 \mathrm{~cm}^{3}$ of sodium hydroxide solution, which has a concentration of $0.50 \mathrm{~mol} / \mathrm{dm}^{3}$.

Calculate the concentration of the sulfuric acid in $\mathrm{g} / \mathrm{dm}^{3}$
$0.5 \mathrm{~mol} / \mathrm{dm}^{3} \times(24 / 1000) \mathrm{dm}^{3}=0.012 \mathrm{~mol}$ of NaOH

The equation shows that 2 mol of NaOH reacts with 1 mol of $\mathrm{H}_{2} \mathrm{SO}_{4}$, so the number of moles in $12.20 \mathrm{~cm}^{3}$ of sulfuric acid is

Calculate the concentration of sulfuric acid in $\mathrm{mol} / \mathrm{dm}^{3}$

Calculate the concentration of sulfuric acid in $g / d m^{3}$

